# Motion-Detecting Sentry

# GROUP 33 FINAL PRESENTATION

LIDERMA GUERRY Computer Engineering

#### KAITLYN MARTIN Electrical Engineering

#### MICHAEL MACALLISTER

**Computer Engineering** 

#### QUINTIN JIMENEZ Computer Engineering









# MOTIVATION

- ENTERTAINMENT/RECREATION
- Personal/Business Security
- MILITARY APPLICATIONS



# GOALS AND OBJECTIVES

#### • PRIMARY GOALS:

- Identification of targets through computer vision
- PAINTBALL GUN CAPABLE OF AIMING AT AND HITTING TARGETS

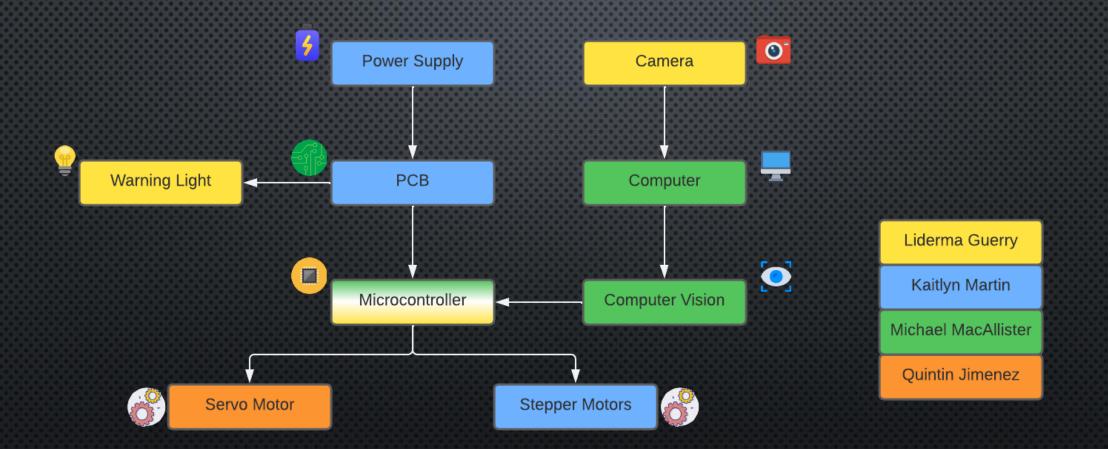
(()

- WARNING LIGHT
- NON-LETHAL AMMUNITION
- MODIFIABLE
- EASILY TRANSPORTABLE
- SUFFICIENT POWER SUPPLY

# **KEY SPECIFICATIONS**

| Specification                 | Requirement                       |
|-------------------------------|-----------------------------------|
| Accuracy (minimum)            | 70%                               |
| Traverse                      | 180° horizontally, 45° vertically |
| Range                         | 10 – 75 feet                      |
| Power Supply Duration         | 3 hours                           |
| Ammunition Capacity (minimum) | 20 rounds                         |
| Weight (maximum)              | 40 pounds                         |

# HARDWARE SPECIFICATIONS


- TURRET SHOULD HAVE A CAMERA WITH HIGH ENOUGH RESOLUTION SUCH THAT HUMAN FIGURES CAN BE DETERMINED WITHIN A RANGE OF 10-75 FEET
- WARNING SYSTEM TO INDICATE THE TURRET IS ABOUT TO FIRE
- FULLY AUTOMATIC FIRE
- MAGAZINE OF AT LEAST 20 ROUNDS
- TURRET SHOULD BE LIGHTWEIGHT, ROUGHLY 40 POUNDS OR LESS, ENABLING A SINGLE INDIVIDUAL TO SAFELY LIFT AND RELOCATED THE TURRET AS DESIRED
- INTERNAL POWER SUPPLY LASTING UP TO 3 HOURS
- COST OF NO MORE THAN \$600

# SOFTWARE SPECIFICATIONS

- Should use computer vision to identify targets within range of 30 feet
- MOTION SENSOR ACTIVATES THE CAMERA TO CHECK FOR TARGETS WITHIN 30 FEET
- WARNING LIGHT WHEN A TARGET ENTERS THE FIRING RANGE
- Should stop firing when the target leaves 30-foot range
- Should adjust turret's aim as target moves to maintain accuracy

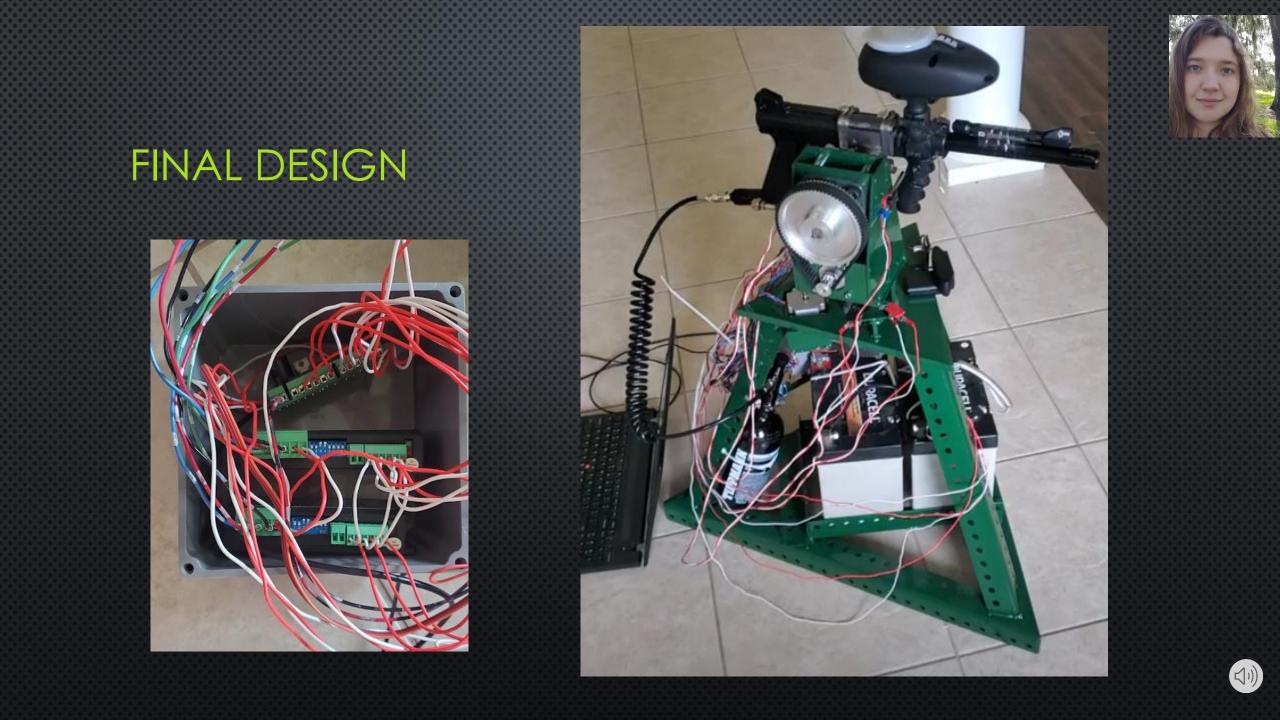


# OVERALL BLOCK DIAGRAM





1 mm


# STRUCTURE DESIGN

# STRUCTURE MATERIAL SELECTION

| Material                  | Cost    |
|---------------------------|---------|
| Pine Wood                 | ~\$20   |
| Medium-Density Fiberboard | ~\$30   |
| Aluminum                  | ~\$60   |
| Steel                     | \$58.89 |

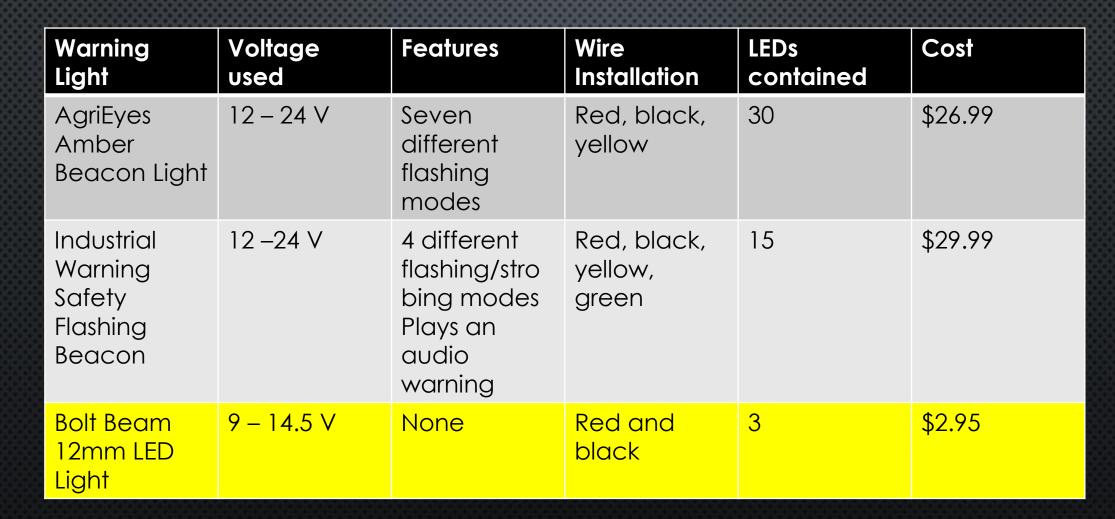


(())

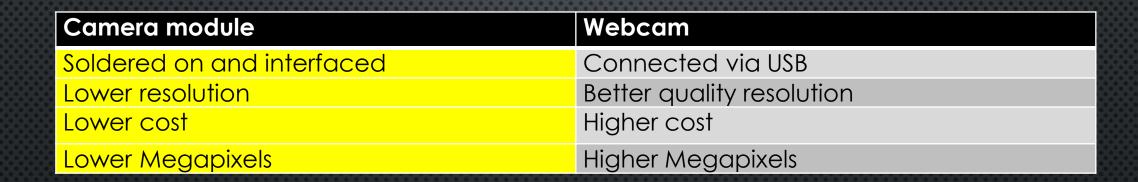







# MICROCONTROLLER SELECTION

- ORIGINALLY THOUGHT WE COULD DO BOTH TURRET CONTROL AND COMPUTER VISION USING A SINGLE BOARD COMPUTER (SBC)
- CONCERNS OVER PERFORMANCE & PRICE RESTRICTIONS CHANGED STRATEGY
- CONSIDERED ARDUINO MICROCONTROLLER + LAPTOP
- Eventually used the ATMEGA MCU from the Arduino on a custom PCB instead
  - ATMEGA 328 IS COMPATIBLE WITH ARDUINO IDE, EASIER TO PROGRAM
  - SUFFICIENT INPUT/OUTPUT PINS
- LAPTOP HAS PROCESSING POWER, BUT LIMITS PORTABILITY & SELF SUFFICIENCY


# MICROCONTROLLER SELECTION

| Arduino  | CPU                  | Memory                           | I/O Pins                                                                                | Operating Voltage | Price   |
|----------|----------------------|----------------------------------|-----------------------------------------------------------------------------------------|-------------------|---------|
| Uno      | 16MHz<br>ATmega328P  | 32KB SRAM, 32KB<br>flash memory  | 14 digital I/O pins<br>(6 PWM);<br>6 analog input pins                                  | 5∨                | \$23.00 |
| Leonardo | 16MHz<br>ATmega32u4  | 2.5KB SRAM, 32KB<br>flash memory | 20 digital I/O pins<br>(7 PWM);<br>12 analog input<br>pins                              | 5V                | \$20.70 |
| Due      | 84MHz<br>AT91SAM3X8E | 96KB SRAM, 512KB<br>flash memory | 54 digital I/O pins<br>(12 PWM);<br>12 analog input<br>pins;<br>2 analog output<br>pins | 3.3∨              | \$40.30 |
| Mega     | 16MHz<br>ATmega2560  | 8KB SRAM, 256KB<br>flash memory  | 54 digital I/O pins<br>(15 PWM);<br>16 analog input<br>pins                             | 5V                | \$40.30 |

# LIGHTING SELECTION



# CAMERA TYPE





# WEBCAM

| Logitech                      | Microsoft                  |  |  |
|-------------------------------|----------------------------|--|--|
| Large selection               | Very limited               |  |  |
| Well known for webcam quality | Webcams are not well known |  |  |
|                               |                            |  |  |
|                               |                            |  |  |
|                               |                            |  |  |

CAMERA SELECTION

| Camera            | Resolution | Frames<br>Per<br>Second | Field of View | Lens<br>Type | Weight<br>(ounces) | Cost    |
|-------------------|------------|-------------------------|---------------|--------------|--------------------|---------|
| Logitech<br>C270  | 720p       | 30                      | 60°           | Plastic      | 2.65               | \$27.99 |
| Logitech<br>C920s | 1080p/720p | 30                      | 78°           | Glass        | 5.71               | \$59.99 |
| Logitech<br>C922  | 1080p/720p | 30/60                   | 78°           | Glass        | 5.71               | \$99.99 |

# MOTOR SELECTION

| Motor Type | Advantages                                                                                                                                                                                | Disadvantages                                                                                                                                      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Stepper    | <ul> <li>Precise positioning</li> <li>Precise speed control</li> <li>Excellent torque at low speed</li> <li>Excellent torque to maintain position</li> </ul>                              | <ul> <li>Limited torque at high speed</li> <li>Low efficiency</li> <li>More complex to control</li> </ul>                                          |
| DC         | <ul><li>Efficient</li><li>Reliable</li><li>Simple control</li></ul>                                                                                                                       | <ul> <li>Some brushless motors<br/>require a specialized<br/>regulator to control</li> <li>Imprecise</li> </ul>                                    |
| Servo      | <ul> <li>Consistent torque at varying speeds</li> <li>Excellent torque at high speed</li> <li>High variety in size and torque ratings</li> <li>Direct control over positioning</li> </ul> | <ul> <li>Limited range of motion,<br/>usually 180 degrees</li> <li>Small adjustments while<br/>attempting to hold a<br/>steady position</li> </ul> |

# STEPPER MOTOR SELECTION

| Frame<br>size | Diameter<br>(mm) | Typical<br>torque<br>range<br>(Nm) | Typical<br>speed<br>range<br>(RPM) | Ste<br>Ang<br>Holo<br>Torc |
|---------------|------------------|------------------------------------|------------------------------------|----------------------------|
| NEMA 17       | 42               | 0.2 - 1                            | 0 - 1000                           | Rat                        |
| NEMA 23       | 57               | 0.5 - 3                            | 0 - 1000                           | Curre<br>Phc               |
| NEMA 24       | 60               | 1.2 - 4.6                          | 0 - 1000                           | Numt<br>Lec                |

| Motor                       | E-Series<br>Nema 23    | P-Series<br>Nema 23<br>x76 | Nema 17               |
|-----------------------------|------------------------|----------------------------|-----------------------|
| Dimensions                  | 57x57x56m<br>m         | 57x57x76m<br>m             | 42x42x34m<br>m        |
| Step<br>Angle               | 1.8<br>degree          | 1.8<br>degree              | 1.8<br>degree         |
| Holding<br>Torque           | 1.26Nm<br>(178.4oz.in) | 1.9Nm<br>(269oz.in)        | 0.26Nm<br>(36.8oz.in) |
| Rated<br>Current /<br>Phase | 2.8A                   | 2.8A                       | 0.4A                  |
| Number of<br>Leads          | 4                      | 4                          | 4                     |
| Lead<br>length              | 300mm                  | 500mm                      | 1000mm                |
| Price                       | \$26.78                | \$32.05                    | \$22.89               |



↓))

## STEPPER MOTOR DRIVERS

| Driver        | Operational<br>Voltage | Continuous<br>current/<br>phase | Max current/<br>phase | Micro-steps                                    | Price   |
|---------------|------------------------|---------------------------------|-----------------------|------------------------------------------------|---------|
| DRV 8825      | 8V - 45V               | 1.5 A                           | 2.2 A                 | Full, ½, ¼,<br>1/8, 1/16, 1/32                 | \$11.95 |
| DRV 8880      | 6.5V - 45V             | 1.0 A                           | 1.6 A                 | Full, non-circular<br>½, ½, ¼, 1/8,<br>1/16    | \$8.95  |
| A4988 (Black) | 8V - 35V               | 1.2 A                           | 2.0 A                 | Full, ½, ¼,<br>1/8, 1/16                       | \$7.49  |
| TB67S128FTG   | 6.5V - 44V             | 2.1 A                           | 5.0 A                 | Full, ½, ¼,<br>1/8, 1/16,<br>1/32, 1/64, 1/128 | \$13.95 |
| DM542T        | 20V - 50V              | 1-4.5A                          | 4.5 A                 | Full, ½, ¼, 1/8,<br>1/16, 1/32, 1/64,<br>1/128 | \$28.99 |

# POWER SUPPLY

| Power Supply                  | Туре                    | Voltage<br>(V) | Capacity<br>(Ah) | Weight<br>(lbs) | Size (in)             | Price              |
|-------------------------------|-------------------------|----------------|------------------|-----------------|-----------------------|--------------------|
| Tmezon Power<br>Adapter       | Power Adapter           | 12             | N/A              | N/A             | N/A                   | \$8.99             |
| Universal Battery<br>UB1280   | Rechargeable<br>Battery | 12             | 8                | 4.96            | 5.94 x 2.56<br>x 3.94 | \$20.89            |
| TalentCell<br>PB240A1         | Rechargeable<br>Battery | 24             | 22.4             | 1.43            | 0.94x2.48x<br>4.13    | \$72.79            |
| Duracell Ultra<br>DURDC12-55P | Battery                 | 12             | 55               | 42.26           | 8.98x 5.39x<br>9.06   | \$174.99<br>(FREE) |

# POWER SYSTEM IMPLEMENTATION

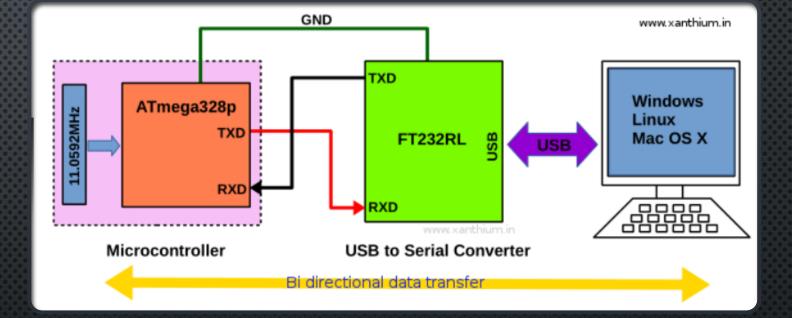
| Load on the 24-Volt Source |     |  |  |  |  |
|----------------------------|-----|--|--|--|--|
| Microcontroller            | 5V  |  |  |  |  |
| Stepper Motors (2)         | 24V |  |  |  |  |
| Servo Motor                | 5V  |  |  |  |  |
| Warning Light              | 12V |  |  |  |  |
| Stepper Motor Drivers      | 5V  |  |  |  |  |

# SERVO SELECTION

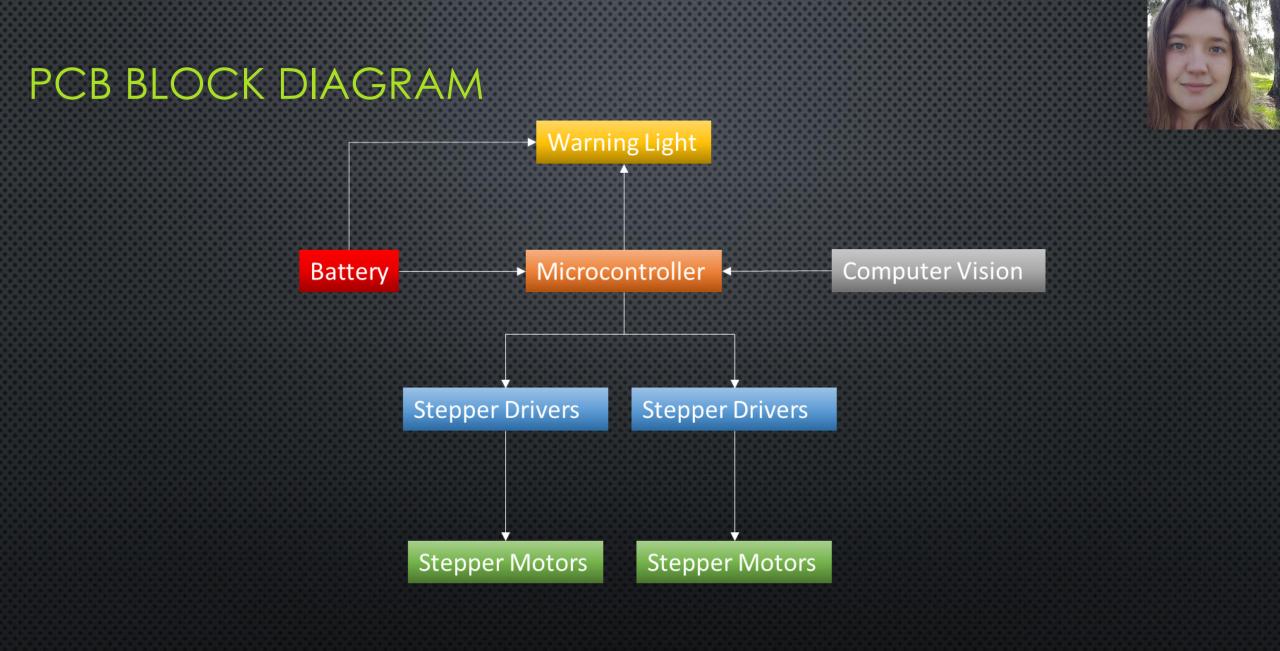
| Servo               | Power             | Speed                 | Torque    | Rotation<br>Angle                        | Size<br>(L x W x H)            | Price   |
|---------------------|-------------------|-----------------------|-----------|------------------------------------------|--------------------------------|---------|
| Tower Pro<br>MG995  | 4.8V -<br>6.0V DC | 60 deg in 0.2<br>sec  | 8.5 kg-cm | 120 deg                                  | 40.7mm x<br>19.7mm x<br>42.9mm | \$11.99 |
| Tower Pro<br>MG995R | 4.8V -<br>6.0V DC | 60 deg in<br>0.20 sec | 9.4 kg-cm | 120 deg                                  | 40.7mm x<br>19.7mm x<br>42.9mm | \$19.95 |
| Hitec HS-<br>311    | 4.8V -<br>6.0V DC | 60 deg in<br>0.19 sec | 3.0 kg-cm | 96 deg; 202<br>deg with<br>travel turner | 40.0mm x<br>20.0mm x<br>36.5mm | \$13.49 |
| Hitec HS-<br>645 MG | 4.8V -<br>6.0V DC | 60 deg in<br>0.24 sec | 7.7 kg-cm | 90 deg; 197<br>deg with<br>travel turner | 40.2mm x<br>19.8mm x<br>39.0mm | \$35.99 |

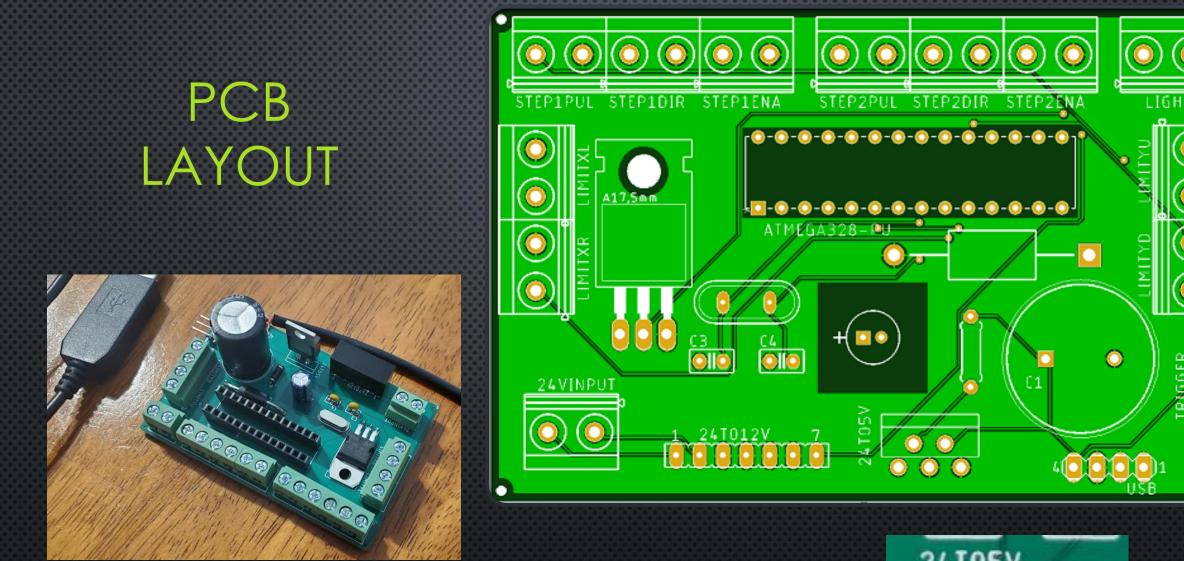
# TRIGGERING SERVO (TOWER PRO MG995)

- Speed & position feedback
- Consistent torque at varying speeds (8.5 kg-cm)
- DIRECT CONTROL OVER POSITIONING (ROTATION ANGLE: 120 DEGREES)
- LOW POWER CONSUMPTION (4.8 V 6.0 V DC)





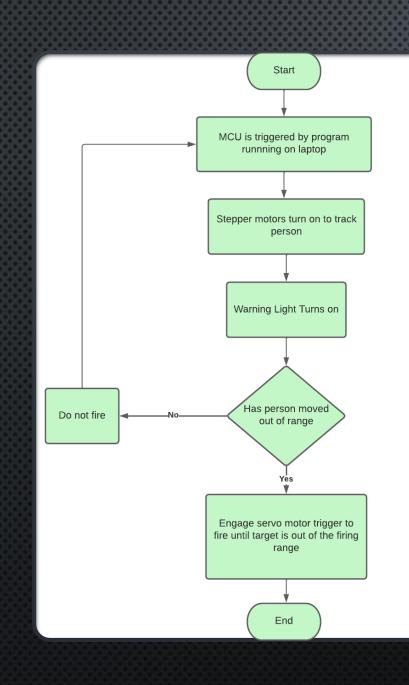


### SERIAL COMMUNICATION

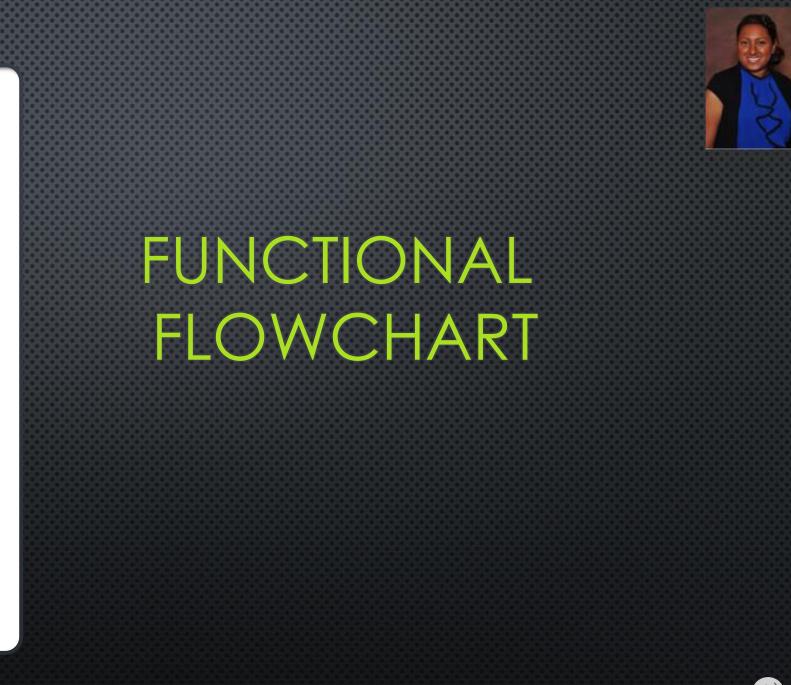

• FT232RL

- ALLOWS COMMUNICATION
   BETWEEN MCU & PC
  - SERIAL USB



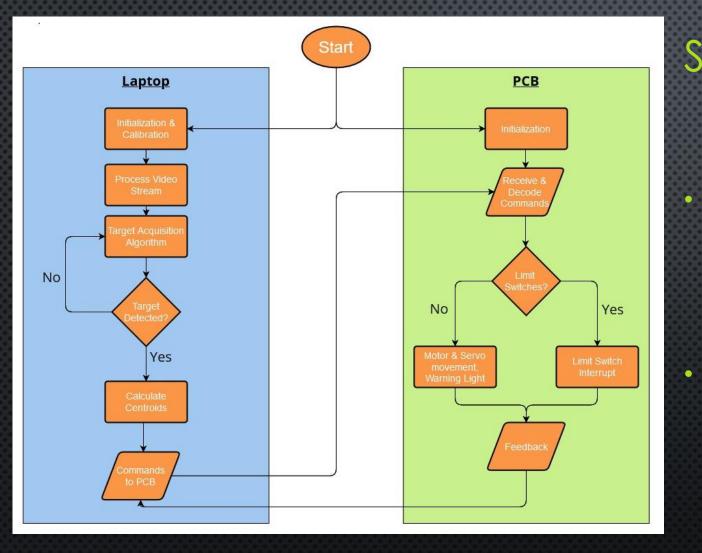
(1)




#### OLD PCB PROBLEMATIC FOOTPRINT







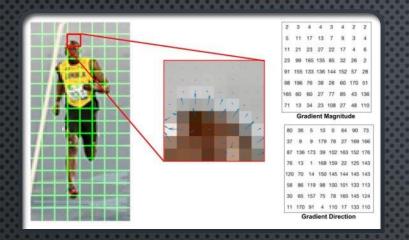


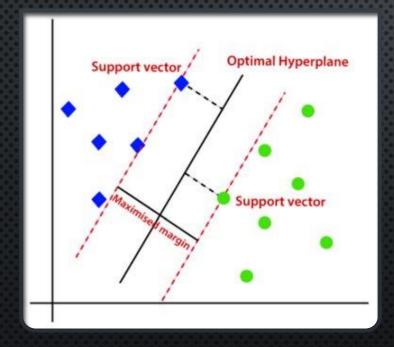

**⟨**'))





# SOFTWARE OVERVIEW


#### LAPTOP


- HANDLES COMPUTER VISION ASPECT OF PROJECT
- Waits for response before sending next COMMAND

(v))

#### PCB

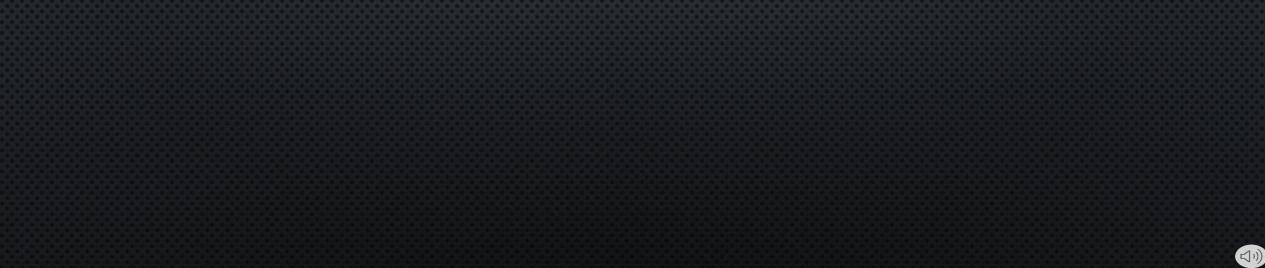
- RECEIVES INSTRUCTIONS FROM LAPTOP
- COMMANDS MOTORS & LIGHTS ACCORDINGLY





# LAPTOP SOFTWARE

#### OPENCV


•

- ACQUIRING & PROCESSING VIDEO STREAM FROM CAMERA
- HISTOGRAM OF ORIENTED GRADIENTS
  - FEATURE DETECTION
- LINEAR SUPPORT VECTOR MACHINE
  - FEATURE CLASSIFICATION
- PYTHON
  - FASTER TO WRITE, EASIER TO DEBUG
  - PYSERIAL COMMUNICATION
- CALCULATIONS
  - CALCULATE TARGET STEPS
  - FORMULATE & SEND INSTRUCTIONS



# SOFTWARE COMPARISON

| OpenCV                                          | TensorFlow                                              |
|-------------------------------------------------|---------------------------------------------------------|
| Computer Vision                                 | Machine Learning                                        |
| Image processing and detection                  | Pattern Detection                                       |
| Uses C++, Python, Java and MATLAB               | Uses C, C++, Java, and Python                           |
| Operates on Windows, Linux, Android and Mac OS. | Operates on Windows, Ubuntu, macOS, and Python 3.7-3.9. |
| Efficiency of real-time applications            | Mathematical solutions using dataflow charts            |





# CODING LANGUAGE COMPARISON

| C++ (will be used for microcontroller) | Python (OpenCV)                           |
|----------------------------------------|-------------------------------------------|
| Object-Oriented                        | Object-Oriented                           |
| Harder to use                          | Easier to use                             |
| Has predefined syntaxes and structure  | Syntax is easier to remember              |
| Dynamically typed                      | Statically Typed                          |
| Pre-compiled                           | Uses Interpreter                          |
| Faster speed                           | Slower Speed                              |
| More lines of code                     | Less lines of code                        |
| Manages memory through pointers        | Uses a garbage collector to manage memory |





(い)

# EMBEDDED SOFTWARE

- ATMEGA 328 ARDUINO IDE CAN BE USED
- Receives instructions from laptop as binary
  - TRANSLATES THESE BINARY NUMBERS INTO INSTRUCTIONS FOR FUNCTIONS
  - Pan & Tilt Stepper Motors
  - TRIGGER SERVO
  - WARNING LIGHT



# ACTUAL RESULTS

| Key Specifications | Predicted                            | Actual     |
|--------------------|--------------------------------------|------------|
| Accuracy (minimum) | 70%                                  | 50%        |
| Traverse           | 180° horizontally, 45°<br>vertically | Success    |
| Range              | 10-75 feet                           | 10-30 feet |



# ADMINISTRATION

# PROJECT TIMELINE

| Senior Design II |                       |                               |
|------------------|-----------------------|-------------------------------|
| Number           | Milestone             | Planned<br>Completion<br>Week |
| 1                | Finish ordering parts | 1/17/2022                     |
| 2                | Start building        | 2/7/2022                      |
| 3                | Start Initial Testing | 2/14/2022                     |
| 4                | CDR Presentation      | 2/25/2022                     |
| 5                | Mid-Term Demo         | 3/21/2022                     |
| 6                | Final Demo            | 4/18/2022                     |
| 7                | Final Documentation   | 4/26/2022                     |

# PROTOTYPING

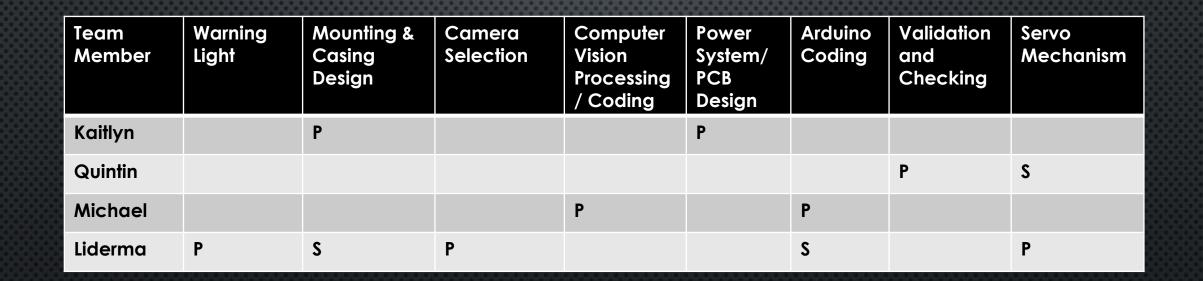
#### Phase I

- Software prototyping with arduino development boards
- Computer vision prototyping with laptop & its inbuilt camera

#### Phase II

- Building the physical unit
- Testing the code with pcb to ensure all parts of unit is functioning
- Making necessary changes

#### Phase III


• Ensure the unit is functioning as intended and ready to demo

# BUDGET



| Item                    | Quantity | Price Estimate |
|-------------------------|----------|----------------|
| Camera                  | 1        | \$60           |
| PCB                     | 1        | \$30           |
| Power Cord              | 1        | \$10           |
| Internal Power Supply   | 1        | \$(175) Free   |
| Paintball Gun           | 1        | \$92           |
| Paintballs              | 1        | \$35           |
| Air Tank                | 1        | \$30           |
| Motors                  | 3        | \$60           |
| Microcontroller         | 1        | \$30           |
| Jumper Wires            | 1        | \$5            |
| Paint                   | 1        | \$10           |
| Screws and Washers      | 2        | \$20           |
| Adhesive                | 1        | \$12           |
| Red Warning Light       | 1        | \$13           |
| Materials for Structure | 1        | \$100          |
| Total                   | -        | \$507          |

# INDIVIDUAL RESPONSIBILITIES & WORK DISTRIBUTION





**⊲**))

# DESIGNS CONSTRAINTS

(1)

- MONEY
- SCHEDULES
- DURABILITY
- ENERGY
- DETECTION
- COMMUNICATION (MCU)

# THANK YOU!

# ANY QUESTIONS?

↓))